
ELECTRICAL HARDWARE DESIGN FOR MOUNT LOCKS 1

Abstract—Mount Locks is a startup focused on providing

compact locking solutions for scooters and other micromobility
solutions to both ride sharing companies like Bird and Lime and
to more traditional manufacturers like Razor. Rebranded after
Spring 2018, it applied for Generate, a student-led product
development studio at Northeastern University in Boston,
Massachusetts, and was selected as a client for the Fall 2019
semester. As one of the engineers tasked with creating the locking
solution prototype, the author focused on the electrical hardware
design for the project, creating the electrical inner-workings of a
works-like prototype which was then merged with 3D printed
housings and other mechanical parts to create a fully-assembled
looks-like, works-like prototype. Specifically, he conceptualized
the hardware system design of the prototype with respect to
project specifications and requirements, selected components,
performed schematic capture, designed and assembled a printed
circuit board, and achieved full system integration and testing of
the hardware, resulting in a demo and prototype showcased on
December 3rd, 2019. With the hand-off taking place shortly after
the Fall semester, the client will then proceed with moving
through the rest of product development lifecycle, starting with a
limited manufacturing run and eventually performing
demonstrations with venture capitalists to fund company growth.

Index Terms—Generate, hardware, locking, micromobility

I. INTRODUCTION
HIS paper is intended to cover the electrical hardware
design of Mount Locks, a client of Generate, Northeastern

University’s student-led product development studio, during
the Fall 2019 semester. Notably, Mount Locks is one of the
first ever returning clients of Generate, and after undergoing a
pivot to become a startup focused on providing compact
locking solutions for scooters and micromobility solutions for
both ridesharing companies like Bird and Lime and traditional
manufactures like Razor, it contracted a professional product
development studio, Link PD in Denver, Colorado, to
physically embody its vision in a first-iteration prototype
focused on a locking solution for scooters. From Link,
Generate was handed a substantial mechanical computer-aided
design (CAD) model but almost no electrical information, and
with little other documentation or reference provided by Link,
over the course of the semester, the Mount Locks team
overhauled almost every subsystem of the product to move it
from a demo prototype to a device that would be more
representative of the final product. As a whole, the team added

Daniel S. Castle is pursuing a Bachelor of Science in Electrical Engineering
degree from the Department of Electrical and Computer Engineering,
Northeastern University, Boston, MA 021115 USA.
E-mail: castle.d@husky.neu.edu. Cell: 1-302-332-3149.

additional core functionality to the product and optimized the
design along multiple dimensions; namely, the team
dramatically reduced the complexity of the locking system,
added smart cord-cutting detection and subsequent alarm for
the lock, expanded the functionality of a companion
smartphone application made by the client before the
semester, bettered the user experience of the product through a
more robust and realistic user workflow model, and created
the entire electrical hardware and firmware work from scratch.

Within the semester, the author focused on the electrical
hardware design of the project, encompassing conceptual
scope through a specifications and requirements
determination, electrical component selection, schematic
capture, printed circuit board (PCB) design and assembly, and
systems integration with both the firmware and with the looks-
like prototype that the mechanical engineers on the team were
creating in parallel. Those topics will be expanded upon and
covered in this paper.

II. SPECIFICATIONS AND REQUIREMENTS
With no electrical engineering direction from Link other

than that they used a Bluetooth Low Energy (BLE) chip in
their design, project directives started from a high level and
drilled down as more client input was gathered and a mock
user workflow was mapped out.

Since the team’s liaison to the client, Madi Rifkin, was in
California on co-op, the team had a secondary client contact
member local to Boston that they could contact; however, in
the beginning of the project, communicating with her was only
possible through the team’s project lead. As such, the author
created a shared Google Doc with the project lead detailing a
list of questions to ask them which were designed to establish
core electrical project parameters. Chief among them was to
find out what high-level component systems were already in
place, what the client needed to have accomplished by the end
of the semester, what the client wanted to have accomplished
by the end of the semester, and what any potential reach goals
were. In other words, these questions were designed to create
the project requirements.

In terms of what had already been done, only simple BLE
communication to an app and a motorized locking mechanism
had been breadboarded into Link’s demo unit; no mention of
the specific microcontroller unit that Link used was provided,
nor was a schematic or a bill of materials since Madi did not
have that information. Only the specific BLE chip was known,
which will be discussed in more detail later in the paper.

What the client needed electrically involved a detailed
schematic, working and assembled PCB, and clear
hardware/software integration of a system that contained a
BLE module, microcontroller (MCU), battery, alarm, LED

Electrical Hardware Design for Mount Locks
Daniel S. Castle

T

ELECTRICAL HARDWARE DESIGN FOR MOUNT LOCKS 2

indication, and locking system in-unit. Similarly, what they
wanted can be summarized by their reach goals: secure
Bluetooth communication and a nice user interface with an
app. Thus, the reach goals were software-oriented, and all
hardware deliverables were considered project musts.

Once the project lead discussed the questions with the
client, the answers he received helped inform me of the next
step in the process, specification breakdown. After checking
with the client, these specifications were: a rechargeable
battery that lasts 24 hours while the device is in use; an alarm
that is above the range of normal city noise, so 90dB;
immediate detection of an cord being cut that triggers the
alarm; and an LED ring that provides feedback to the user
regarding power status and alarm sounding.

Note: those are not a lot of specifications, and any details
regarding how they get done were left solely to me and the
rest of the team. Thus, after conceptualizing the needs of the
client, we decided to map out the user workflow to see how
we wanted to accomplish these goals.

We started by envisioning how the device would interact
with a scooter from Lime. How would the user unlock the
lock? Would they use their phone? Would it be through
Bluetooth, or maybe through NFC? How would they lock it
back up again? How would it know when it was locked but
that its cord was cut, indicating that it was being stolen?

The answers to these questions informed our approach to
the project; namely, that we initially felt that NFC was a better
choice than Bluetooth for unlocking and that either an
encoder, magnetic switch, or other device would be necessary
to detect a cord being cut. However, throughout the
component selection process, these initial observations
changed as we worked toward the project deliverables.

III. COMPONENT SELECTION
After determining what the project specifications and

requirements were, component selection took place.

A. Microcontroller Selection
The first step in component selection is to analyze the

project specifications against the experience level of the team,
thereby comparing each goal against how hard the team would
have to work in order to achieve it. Moving from there,
Generate, throughout its history, has only ever used two main
MCU architectures in the past: ARM and AVR; therefore, our
selection of MCU selection was self-limited to those two
choices. Next, after determining that almost all of the team’s
experience lay with the AVR style of MCU, chiefly with
Arduino boards, and that little to no experience was had with
ARM boards like the STM32, despite the fact that the STM32
has a robust feature set like a faster clock, more on-board
memory, and more GPIOs, the decision was made to prototype
on the Arduino platform. With this in mind, this choice
became even easier considering that the Arduino itself has its
own IDE, complete with robust tutorials online and with a
substantial number of compatible peripheral devices.
Furthermore, given that the primary objective is to develop a
working prototype in a semester and not a utilize a “go-for-
broke” mentality to a codebase that would inevitably change
after the client hand-off, the AVR style processors of the

Arduino boards had a clear path forward.
After settling the ARM vs. AVR debate and choosing

Arduino as the platform of choice, the next question became
which Arduino chip to select. After looking around the
Sherman Center for available boards, only four remained: the
Mega, the Uno, the Zero, and the Leonardo. Given that the
Mega had 54 GPIOs available and we only needed GPIOs for
a handful of component functional blocks, the Mega quickly
dropped out of the race, as did the Zero, which only runs at
3.3V and would have needed a dedicated power line solely for
that specific component. Hence, only two boards were left,
and between the two, only one of them had an MCU that was
meant to be removed from the Arduino and placed into a
different circuit, thereby providing a way to program the chip
without needing to perform in-circuit serial programming
(ISP). As such, the Uno won the battle, and while the PCB for
this project does have an ISP header available for use
specifically for burning our code in a factory setting, it was
not utilized throughout the project.

 Figure 1: The MCU that we selected, the ATmega328P

Importantly, it is worth distinguishing between the Arduino

MCU, shown in Figure 1, and the standalone Arduino board
that is traditionally used for breadboarding projects. The
Arduino MCU that we selected was the ATmega328P, which
comes packaged in a breakout board called the Arduino Uno.
This board does have two variants, one with a removable
processor that sits inside a socket that is soldered onto the
board and one where the processor itself is directly soldered
onto the surface of the board using SMT, also known as
surface mount technology. For ease of programming, we had
both versions while prototyping individual components, but
only the variant with the socket was used during
breadboarding and testing of our entire circuitry.

B. Battery Peripherals
Given that the Arduino Uno’s MCU that we selected as our

processor only runs at 5V, it became immediately clear that a
boost converter would be needed to convert the voltage from a
Li-Po battery, which would power our device, to a steady 5V.
In addition, the boost converter would need an input range of
at least 3.0V - 4.2V, which is the full operating range of the
battery during its discharge curve, with a flag or indicator that
the battery would need to be charged if the battery dropped
below 3V.

As such, deciding on a battery became the first priority,
since the boost converter characteristics would be dependent

ELECTRICAL HARDWARE DESIGN FOR MOUNT LOCKS 3

upon that. Looking at Li-Po batteries on Amazon yielded
plenty of batteries that had no detailed technical specifications
regarding discharge current; as such, Adafruit became the
provider of choice as they gave this information along with the
appropriate charging rate for the battery [2]. Originally, the
battery selected was 6600mAh, which would give an
incredibly long battery life, but given the physical constraints
of the product, a smaller 4400mAh battery was chosen, which
still would produce a battery life much longer than 24 hours if
no alarm was sounding. For reference, Android phone
batteries are usually around 3500mAh on average, and while
calculating battery life depends on current draw over time,
which in our case involved a continuous drain of around
0.625A if the alarm is on but otherwise 0.04A if only the
MCU is powered, going with such a high capacity means that
the battery life spec will almost always be exceeded in a real-
world use case. In other words, assuming the battery is fully
charged, the alarm could blare for a little over 4 hours straight
or last 110 days without charging, which is significant for the
client.

Figure 2: The 4400mAh battery that we selected from Adafruit

Next, knowing the battery for the product, shown in Figure

2 above, the boost converter needed to be selected. Originally,
using an external boost converter IC was examined, with the
parameters of an input voltage range of 2V to 4.3V, which
would cover the full extension of the discharge curve; an
output voltage of 5V, which was necessary for the MCU as
explained above; and an output current of at least 1 Amp,
which was the maximum safe continuous discharge current of
the battery. In fact, while linear regulators come in three
terminal packages that only need output and input capacitors
as external components for stable performance, boost
converters do not offer such an arrangement, so an adjustable
boost converter whose output voltage was dependent on a
resistor divider network was originally chosen. In this way, the
same boost converter could also be used for other voltages that
may be needed for other components by simply duplicating
the design and changing the resistor values, creating a smaller
assembly cost.

However, taking a look at the Adafruit battery again, an

important point is that the battery has a dedicated port through
which it can be plugged into another Adafruit board. In other
words, to attach the battery to our device, the Adafruit battery
can either have its wires cut and stripped, or more elegantly, it
can plug into an already-made Adafruit board that has a
dedicated charging IC and a dedicated 5V boost converter on-
board, both of which are specifically made for the battery [4].
That IC, shown in Figure 3 below, also provides many outputs
that could be utilized in code to produce a variety of important
messages to the user; namely, the low battery output indicator
could trigger a certain flash on our LED ring, the enable line
could be used to reset the device, and the shared voltage line
between the micro-USB charging circuity and the battery
output could be used to detect whether the battery was being
charged or being drained at any given time. Thus, to maximize
prototyping time, the decision was made to roll the two
Adafruit products into our device specifically because after
this prototype was made, in a manufacturing run as the next
logical step for the client, both parts would change depending
on the manufacturer’s preference and deal structure, and
working with a manufacturer to deliver a custom battery and
IC would have been out of scope.

Figure 3: The battery charger IC that we selected from Adafruit

C. Locking Mechanism Peripherals
Originally, in the design that Link made, a motor was used

to turn the lock on and off. Notably, a motor requires
significant energy to rotate, and steps would have needed to be
taken to make sure that it does not rotate fully in the design
and create a source of failure. Thus, the decision was made by
the project lead to look for alternative locking solutions, and
one that was presented involved using a solenoid, which was
chosen because the lock only has two states, just like the two
states of a solenoid (open and closed).

Given this information, I gave the mechanical engineers the
main electrical parameter of the solenoid, which was that the
solenoid needed to operate at 5V so that a dedicated power
solution was not needed, but they were otherwise allowed to
pick whichever solenoid that fit their torque and size
requirements. As such, they selected one from Amazon, the
DS-0420S from Dowonsol, and because it did operate at 5V, I
had no problem implementing it into the electrical design.

ELECTRICAL HARDWARE DESIGN FOR MOUNT LOCKS 4

This solenoid is shown in Figure 4 below:

Figure 4: The solenoid that we selected for the locking mechanism

D. Cord-Cut Detection Peripherals
In order to detect that the cord of the product was cut, many

solutions were debated and hotly talked over. In Generate’s
previous version of the product, the cord detection relied on a
magnetic solution where the entire cord was powered, and if
the cord were cut, a reed switch would trigger an alarm to
sound. While this solution worked well, because the entire
cord had to be powered by the battery, it was considered too
power-intensive, so I developed a new solution.

Knowing that the MCU we selected has both input and
outputs pins, I realized that the cord-cut detection could be
accomplished with no electrical components other than wire.
This feat is due to the fact that the input pins of the MCU are
high impedance while the output pins are low impedance, and
by hooking them together such that a single output pin is
directly connected to a single input pin, if the output pin is set
to output LOW, or ground, then the entire cord would be at a
single voltage but use negligible current due to the high
impedance on the line. Furthermore, if the cord is cut, the
input pin could use an internal pull-up resistor to flip to HIGH,
or 5V, and upon this action, trigger the alarm.

I also realized that knowing the lock state should be known
by the MCU, so implementing a totally mechanical solution
wouldn’t solve this issue. Thus, by modifying the cord itself
such that it now has only a metal head and no live wire, if the
two pins on the MCU each had one wire that together
terminated close enough to each other within the lock, now
when the metal head was inserted, both wires could make a
connection and short together. In this way, the lock being set
could be electrically known to the MCU.

However, this method does not take into account cord-cut
detection, so these two concepts were married together into
the same design. Leaping off of the idea of a metal head inside
the lock, we realized that instead of two wires being connected
together by the metal head, only one wire needed to be fixed
to the lock while the other wire could run through the cord
itself. Then, with that cord terminating at a pogo pin, the end
of the cord could securely lock into place with the existing
design that the mechanical engineers made. Hence, both cord-

cut detection and lock state could be known, and this design is
shown in Figure 5:

Figure 5: The 3D printed cord end terminating with a pogo pin is shown

plugging into the lock, which has copper wrapped around it to create an
electrical connection

E. Alarm Peripheral
In order to broadcast to the world that a scooter was being

stolen, an alarm would need to be sound. Given this need,
along with a relatively small form factor for the alarm, two
types of alarms were debated: piezoelectric buzzers and
magnetic speakers.

Piezoelectric buzzers were first debated because they used
incredibly low power and, up close, could be incredibly loud,
even as loud as the 90dB goal from our specifications list.
However, while implementing firmware code for these
buzzers would have been remarkably easy given the wealth of
online tutorials for them, they simply do not push enough air
to be loud at a distance. Hence, magnetic speakers were next
considered.

These magnetic speakers could reach much higher dB/m
levels than the piezoelectric buzzers, but they also had a major
drawback: power. They are spec’d with a maximum power
level and with the resistance of the speaker itself such that if a
given voltage is applied across the speaker’s terminals, the
power at that voltage can be calculated and compared to the
maximum power level of the speaker. In our case, looking at
the available speakers on Digikey and Mouser, only speakers
with wire leads and with a resistance of 8 Ohms were
considered. These choices were made because the wire leads
allow the speaker to be mounted into our housing at a distance
from our PCB and because the speakers would be operating at
a voltage of 5V. Thus, given that the speakers that fit our size
requirements only came in 4 or 8 Ohm packages, if a 4 Ohm
speaker were chosen, the speaker would need more than 1 amp
of current and would max out the output from the battery IC.
Hence, with a speaker that is 8 Ohms, the current draw is
0.625A nominally, which means that it can blast away while
the LED lights are flashing without limiting the system. The
specific speaker that we chose is shown in Figure 6 on the
next page:

ELECTRICAL HARDWARE DESIGN FOR MOUNT LOCKS 5

Figure 6: The 8-Ohm speaker that is 90dB loud when standing 3 feet away. It
is manufactured by DB Unlimited

F. Status Peripheral
Once an alarm sounds, the client wanted a visual cue to

alert nearby people that something was wrong. As such, in the
design that Link drew up, an LED ring was conceptualized
because it gave a sleek, modern appearance and because it
could be customized to a wide range of colors.

Keeping the LED ring in mind as a client objective, care
was taken to research LED rings and how they might be
integrated into a product. Taking a cue from Adafruit, while I
was doing research on the battery, I noticed that Adafruit
makes several different versions of LED rings. In fact, these
rings had tutorials and drivers for our Arduino MCU, which
would make the firmware much easier, and the rings also had
several million light customization options that we could
curate specifically for our use cases. Plus, the LED rings had
known current draws, set to 18mA per each LED, and only
needed three terminals to work: power, ground, and data.
Given these features, I purchased the smallest LED ring,
which had 12 LEDs attached in a row, because at 18mA for
each LED, I knew that the battery could support this ring and
the alarm at the same time. This LED ring also needs two
external components in order to achieve proper performance: a
bypass capacitor to limit inrush current and a small resistor to
limit voltage spikes across the data line [3]. Figure 7 below
shows the specific LED ring that we chose:

Figure 7: The LED ring that we selected from Adafruit

G. Communication Components
Two different methods of wireless communication were

considered throughout the project: Bluetooth and NFC.
Bluetooth was initially proposed by Link through their

Renesas RL78/G1D board, which unfortunately has little
Arduino compatibility. However, they did have basic
communication between an Android phone and their
breadboarded demo unit established, but after discussing it
further with the client, Bluetooth itself was considered to be
secondary to NFC because of the assumed need to pair
Bluetooth devices in order to communicate between them. As
such, the beginning of the semester focused on trying to bring
up an NFC board and establish communication with a phone.
Given that we were using Arduino as our IDE, I looked at
Arduino-compatible NFC modules, and given the lack of
hobbyist NFC adoption as compared with Bluetooth, only two
NFC modules that had the Arduino drivers were found, and
only one was currently being sold. That module was the Grove
NFC tag, and after purchasing it, the firmware team set out to
program it. This tag is shown in Figure 8 below:

Figure 8: The NFC tag that we selected from Seeed Studio

However, the team ran into several issues involving old

libraries that needed to be debugged, and while NFC tag
recognition was established, phone communication could not
be established by the half-way point of the semester. As such,
the project lead decided to switch to Bluetooth after one of the
firmware engineers attended a hackathon at Harvard and was
able to get basic phone communication working without the
need to pair the phone and chip. That BLE module was the
Adafruit BLE Friend, which like most Adafruit products, has
robust Arduino support and an active community of hobbyists
helping to expand its capabilities [1]. This module is shown
below in Figure 9:

Figure 9: The BLE module that we selected from Adafruit

ELECTRICAL HARDWARE DESIGN FOR MOUNT LOCKS 6

Given that the original BLE module that the firmware team
selected was the HC-05, this pivot changed up my schematic
and hardware design, but because the decision was made
before any layout was started, replacing the HC-05 with the
BLE Friend was simply a matter of removing the voltage
divider necessary for 3.3V communication and replacing it
with the updated pin mapping for this device.

H. Motion Peripheral
After musing with my project lead, I wondered if the

scooter should be able to sense unexpected motion and sound
off its alarm to hedge against it being stolen. Thus, in order to
sense whether it was being moved, the product would have an
accelerometer that would poll the device when it was unlocked
so that the scooter would have a deterrent mechanism against
people stealing it while it remained untethered to an object
(i.e. if the previous user did not attach the lock to anything).

Digging more into the specifics and after talking with Prof.
Sivak, we realized that false alarms would be present if the
accelerometer was implemented, and that these false alarms
had no satisfying resolution because unless the lock was
unlocked by someone using the app, it would not shut off until
the battery died. Furthermore, we would need to try to perfect
an algorithm that would minimize these false alarms, which
would eat up engineering resources that could be devoted
elsewhere. Given these constraints and unsatisfactory answers,
we decided to remove this feature from the product, especially
given that it is not a core feature of the product and is not a
client-mandated requirement to have. However, in another
revision, the concept of motion detection can be revisited, as
we agreed that if done correctly, it could have promise within
the design.

IV. SCHEMATIC DESIGN
Once the components were selected, schematic capture for

a printed circuit board (PCB) took place. The software that I
used was Upverter, which was chosen because it runs through
a web browser in the cloud and because multiple people could
have access and edit the project at the same time.
Additionally, pin mapping was done before schematic design,
which allowed me to connect together every net with the
correct pinout already in place for each component.
Throughout this section, I refer to both wiring and using nets,
and it is worth pointing out that nets are logical connections,
which is technically all that a schematic is in itself. Physical
connections are done in the layout, which is the topic of the
next section. Nevertheless, I refer to both wiring and using
nets in this section because it makes conceptual sense to refer
to connecting components this way, so while I use these terms
interchangeably here, these two concepts should not be
conflated in the next section, Section V.

Figure 10: The MCU schematic

Schematic capture first started with the MCU, as shown in

Figure 10 above. After importing the design of the
ATmega328P from Upverter’s servers into my design,
attention had to be paid to making the MCU functional by
adding all external components necessary for stable
performance. Here, I realized that because the MCU is used in
an Arduino, and every Arduino’s schematics are published
online, I could look at the schematic design and extrapolate
the required components. These involved two external bypass
capacitors to ground connected to the 5V and AREF pins,
which were needed so that high frequency noise could be
filtered. In addition, an external oscillator was needed for the
device. This oscillator, in the beginning of the semester, was
thought to be unnecessary because the MCU itself has a built-
in internal 8MHz oscillator, but because that oscillator has a
poor performance, the Arduino uses an external 16MHz clock
to run its code, and hence, our code. Thus, we also needed to
add the external oscillator, along with its two flanking
capacitors, for frequency stability and to ensure that our code
runs the same way in both an Arduino and in our design. As
mentioned above, the pin mapping was completed before
schematic capture was started, which meant that the MCU
schematic could be completed all at once and not be done
component-by-component.

Figure 11: The schematic for the battery charger IC

Once the MCU was drawn up, the battery charger IC

needed to be connected to power it; hence, an 8-pin header
was placed and the corresponding nets aligned as shown in
Figure 11 above. Because the charger IC had 8 pins, each of
which could be useful in debugging or providing features to
the client, each was wired to pins on the MCU that
corresponded to their function. In other words, besides the
obvious power and ground lines, the charger IC provided
analog signals for the raw battery output and a combined

ELECTRICAL HARDWARE DESIGN FOR MOUNT LOCKS 7

micro-USB and battery output, plus digital signals for low
battery and for resetting the IC. These pins could all be used
for detecting power and the rate at which the battery was
charging, so they could be useful during firmware
development. On the other hand, the USB pin provided shared
power with the micro-USB port, and because we already had a
5V boost converter providing power, this pin was not needed;
hence, the header count was reduced to 7.

Figure 12: The NFC schematic circuitry

 Given the original push for an NFC-enabled device, a

header was provided for this purpose as well, shown above in
Figure 12. As the NFC device that we selected communicated
with our MCU via I2C, I added the necessary pull-up resistors
and chose their value to be 4.7K, which is a standard number
given the low power of the NFC module. This header was
likewise connected to the chosen pins on the MCU, which had
dedicated SDA and SCL lines.

Figure 13: The ISP header’s schematic

While in our design, we solely utilized programming our

MCU via an Arduino breakout board, but I realized that in a
factory setting, this would not be possible. Hence, I wired out
an ISP header, shown in Figure 13, to allow manufactures to
program the chip once it was already placed into the board,
and in fact, we could have also used this method to add new
code or likewise make adjustments if the chip became hard to
access after product assembly. With a standard 3x2 header
chosen for the layout, giving the ISP header the same pinout
as is common in the industry became the next design choice.
Notably, the layout and the schematic have no correlation; as
such, while the schematic has the ISP header as a 6x1 header,
rest assured that the layout is definitely 3x2.

Figure 14: The Adafruit BLE Friend’s header schematic

After the ISP was mapped, the BLE chip needed to be

integrated into the design. Originally, when the HC-05 BLE
module was chosen, both a 4-pin header and a voltage divider
were needed to step down the Rx communication from 5V to
3.3V. However, once the new BLE module was chosen, a
single 7-pin header replaced both design elements, trading off
parts for pins. Though the module itself has space for 8 total
pins, the DFU pin is reserved solely for resetting the BLE chip
and would not be utilized in our code; hence, this pin was
dropped from the design, but the other seven were kept for the
UART communication, power, ground, and special mode lines
that the code would need. Thus, after these decisions, the final
BLE schematic is shown above in Figure 14.

Figure 15: The schematic for the alarm circuitry

 Next, the alarm circuitry as shown in Figure 15 above

needed to be designed. Because we went with a magnetic
speaker whose power requirement is much greater than what
can be supplied by the output of our MCU, simply hooking up
power and ground to our specified GPIO pin and ground
would not suffice. Rather, the speaker would need to be turned
on via a FET, which I chose to be a logic-level N-channel
MOSFET due to its compatibility with the HIGH digital logic
level of 5V, which would send the MOSFET into inversion
and operate in the saturation region. In this way, upon
receiving a HIGH signal, the FET would turn completely on

ELECTRICAL HARDWARE DESIGN FOR MOUNT LOCKS 8

and let the speaker blast at the loudest level that it could
handle. I also made sure that the speaker would not be turned
on if no signal came from the MCU by using a pull-down
resistor, and I maintained signal integrity by adding a small
100 Ohm resistor that would dampen any reflections from
turning on the FET. In addition, because the speaker is
magnetic, a flyback diode was incorporated to ensure that the
MOSFET would not break down if any voltage spikes
appeared when the speaker was turning on and off. Lastly, the
speaker came bundled with a convenient male port, whose
female end could be soldered to my PCB. In this way, the
speaker could be plugged or unplugged and replaced with ease
in the case that the speaker blew out or was left blaring for too
long. Hence, it became part of my schematic.

Figure 16: The schematic for the solenoid circuitry

In a similar fashion, the solenoid had almost the same

design, as shown in Figure 16. This choice was due to three
reasons: first, the solenoid needs a massive current spike to
turn on, second, it is also an inductive load, and third, because
keeping the same design and parts would help keep the PCB
BOM costs down. The only difference between this schematic
design and the speaker’s is that no female header was used
here; rather, the solenoid’s wires themselves were going to be
directly soldered to the PCB.

Figure 17: The schematic for the LED circuitry

At this point, the schematics for the LED ring were
designed as shown in Figure 17. According to Adafruit’s
website, if the LED ring were to be powered by a large
capacitor bank, or in our case, a large capacity battery, a
1000pF capacitor would be required between the power and
ground lines to soak up the initial onrush of current when
power is first applied, thereby saving the pixels from blowing
out. Hence, I included one in my design, despite the $10 cost
for one 1000pF cap on Digikey and its large footprint on the
PCB. In addition, a 470 Ohm resistor was specified to be
connected in series to the data line in order to prevent spikes
from the data line damaging the first pixel in the row.
However, while the website specifies that this is necessary, it
turns out that it is completely the opposite of that. In fact, it
won’t work at all if this 470 Ohm is used; thus, I modified the
schematic to have it be a 0 Ohm resistor instead in case we
needed to analyze the traffic coming through the data line
during debugging.

Figure 18: The schematics for cord-cut detection

Lastly, the cord-cut detection circuitry needed to be

mapped out. Because the cord-cut circuitry on the PCB side is
much less complicated than its hardware implementation
within the device, this only involved placing a 2-pin header
and connecting the two leads to their respective GPIO nets on
the MCU as shown in Figure 18.

In this way, the schematic for my board was designed and
finished. Notably, I tried to make every component a surface
mount component if possible because it would both provide a
better mechanical connection than my hand soldering and
because it would provide a smaller profile to fit inside the
mechanical housing.

V. PCB DESIGN
Once the schematic was finished, I began the PCB layout.

The first step in designing a good layout is to determine how
many layers to use for the PCB. Because our PCB was
relatively simple, and because cost was a factor, I made the
choice to create a 2-layer PCB, which would be the simplest to
manufacture and the fastest to arrive at a given price point.

The second step is component placement; in other words,
deciding on a board size and determining where every
component will be placed within those dimensions. After
talking to the mechanical engineers, the initial board size for
the PCB was allowed to be 1.5’’ x 3’’; while this later
expanded by 3mm in each direction to accommodate screw
holes to mount the PCB, this design change was made after
the PCB had already been fully designed and is thus not
included in talking about specific reasoning for component

ELECTRICAL HARDWARE DESIGN FOR MOUNT LOCKS 9

and trace placing.
The first task for component placement traditionally

involves first placing the parts that have engineering mandates
to be at certain locations on the board. Because all of our user-
facing components are external to the board, meaning they
will be affixed to the board via wires (whose length at this
point in the semester was still unknown because the housing
had not been designed), this was not a major decision, so other
factors took hold. In this case, after grouping components by
function within the layout tool, I noticed that the MCU
lengthwise is almost 1.5’’. Meaning, because it is about the
same size lengthwise as the PCB, I can use the MCU to
bifurcate the PCB into two sections that correspond to
different functions.

Using that methodology, I placed the MCU in the middle of
the board, and noting that the MCU also has external
components grouped with it, I placed those components close
to their respective pins. For the ATmega328P, this involved
placing the two decoupling caps close to their respective 5V
pins and the crystal oscillator circuitry close to the two pins
dedicated for crystal oscillation.

Next, I determined that the left-hand side of the board
would be used for two functions: external wireless
communication and MCU control. Thus, the left-hand side of
the board had the NFC and BLE headers, as well as the battery
charger IC and ISP headers. Of course, coupled to the NFC
header are the I2C pull-up resistors, so those were grouped
accordingly.

On the right side of the PCB lay the rest of the functional
groups: status, lock, alarm, and cord-cut detection. Because
the solenoid and the speaker, for the lock and alarm functional
groups respectively, had almost identical schematics, I wanted
to place them close to each other for three reasons: power;
because they were most likely to be switching and cause
unwanted ground bounce and signal integrity issues; heat,
because they were most likely to generate the most thermal
stress and that could be mitigated with a heatsink placed over
the area; and clarity, because the schematics matched and
routing out the same circuit in a similar area would both look
better and be easier to keep straight when routing.

The last two functional groups, status and cord-cut
detection, were also placed on the right side because it would
be the least disruptive to signals coming from the MCU; in
other words, because they fit best there. For the status
functional group, the LED ring required that the header be
placed near the inrush-limiting capacitor, so these components
were placed first, and the data line of the LED header was
lined up perfectly with the respective pin of the MCU,
meaning that the routing would be easy, which is one of the
goals of component placement. Lastly, the cord-cut detection
header was placed nearby to its pins, which also allowed for
easy routing.

Once the components were all placed, I stepped back to
align and adjust each component so that they all looked nice
and neat on the board. Typically, in a signal integrity-sensitive
design, this would instead focus on placing components away
from each other rather than toward each other, but because no

component needed a high signal integrity, I could afford the
indulgence of a pretty board. In this case, I aligned every
component into respective columns so that the board became
more organized, and with proper row spacing between
components to ensure clean routing standards, and the board’s
design became both functional and clean.

At this point, the third step, routing, took place. During this
process, each net, the logical connection, transforms into a
trace, or a physical copper connection, on the board. However,
before routing actual traces, planning what to do with the
surrounding copper planes are paramount. Because I had a 2-
layer design, I could create two copper pours that could
connect every net assigned to a specific value to the same net
of the copper pour, and traditionally, because it provides both
the best signal integrity and the best cost efficiency when
routing, I decided to use one copper plane for ground and the
other copper plane for 5V.

In this way, all of my headers, which were all through hole,
could be connected to ground or 5V by virtue of the pour,
meaning that I would not have to route those signals at all on
my board. Deciding that the top layer would be ground, I only
had to route out the 5V connections to the few surface mount
components that were not connected to the pour but still
needed the electrical connection; these were the I2C pull-up
resistors, MCU bypass capacitors, and LED ring capacitor.

Once the power traces were routed, I routed all of the signal
traces from the MCU. In doing so, I realized that, in order to
make routing easier and increase signal integrity, some of the
pins needed to be swapped and mapped to different
components. Once this took place, after making smart
placement choices, the routing of the all GPIO and analog
MCU signals could be solely accomplished on the top layer
except for a few that, because there was no more space,
needed to be routed through the bottom layer to their
respective pins. In fact, only one via was needed throughout
the entire design, which is something that I take pride in.

After the MCU traces were routed, all other components
that had unfinished nets were connected. These components
included the FETs, their corresponding pull-down and
reflection-damping resistors, and the flyback diode. By
keeping with proper routing guidelines, these components
were likewise routed with proper trace widths, which was
especially important for the solenoid and speaker FETs. In
fact, because these two devices could pull as much as 0.7A, I
had to increase my normal trace width size from 20 mils to 60
mils to be on the safe side.

In this way, all of my components were placed and routed
within the PCB as shown in Figures 19 and 20 on the next
page. Now, I could proceed to order my PCB from Sunstone
Circuits.

ELECTRICAL HARDWARE DESIGN FOR MOUNT LOCKS 10

Figure 19: The top layer of the PCB layout

Figure 20: The bottom layer of the PCB layout

VI. PCB ASSEMBLY AND TESTING

Figure 21: The PCB after manufacture by Sunstone Circuits

With a lead time of 2 days and 2-day shipping, my PCB

order came in a week, and one of the four PCBs that I ordered
is shown in Figure 21 above. Once all of my components also
arrived in the Sherman Center, I set out to assemble one as a
first revision board. To start, I soldered all of the SMD
components to the board because, with no through hole
components in place, the board provides a level surface that
makes those small components easier to align. Plus, by
soldering the components that need a hot air gun first, I can
ensure that components that I previously soldered do not fall
off of the board as I’m trying to solder other components onto
the board. These SMD components comprised every resistor,
capacitor, FET, and diode for my design, and once they were
all soldered onto the board, I could begin soldering the rest of
the components by hand.

I began the hand soldering by first soldering the female
speaker connection, as it had the hardest soldering positioning

due to the small through hole size and aggressive spacing
necessary to maintain compatibility with the proprietary
header. At first, I actually soldered the wrong speaker
connector to the board, and because the through hole was so
small, the solder gun couldn’t actually suck up the solder.
Therefore, I actually needed to start over and repeat the
process with a new board.

Once the new board had all SMD components soldered, I
debated removing the small metal leads from the female
connector and simply soldering those, which would allow me
to solder the speaker directly to the board. However, I wanted
to maintain the ability to quickly swap out the speaker for a
new one if the one we were using became blown out or broken
or if we needed to add resistance to the line to lower the
maximum speaker volume. Hence, I stuck with the female
connector for the PCB.

Next, because we wanted to be able to remove the MCU
and reprogram it via an Arduino, I instead soldered a 28-pin
socket in its place. That way, the socket would maintain the
robust electrical connection required and allow for the MCU
to both be secure within the socket and able to be popped out,
a feature which was heavily utilized during debugging.

I then soldered the LED ring onto the board with 2 inches
of wire separating the board from the LED ring, per the
instructions from the mechanical engineering team. In fact,
they said that all wires should be around 2 inches in length
expect for the speaker wires, which should be longer; thus,
this can be the assumed wire length from now on.

After the LED Ring, I next soldered onto the board the
battery charger IC with 22 gauge wire in order to ensure that
the wires wouldn’t burn up during peak performance, and after
placing one of our MCUs into the socket, tested the board to
see if the MCU could turn on the LED ring. With this gut-
check successfully passed, I then wired up the BLE module,
which already had male headers in place. Given this factor,
and the fact that the BLE module firmware was still in
development up to and including the day of the Showcase, I
wanted to make the BLE module removable just like the
speaker so that it could be tested both in the full assembly and
in a smaller breakout board for faster code turnaround. Thus,
in order to make the BLE module removeable, I snipped 7
female-female wires in half and soldered the snipped ends to
the board, keeping the female connections open so the module
could be easily plugged and unplugged. In fact, the ability to
selectively remove one of the wires but keep the others on
allowed one of my team members to diagnose a firmware
issue that only appeared when one of the wires was connected.
As a result, only 6 of the 7 wires were needed in the final
design, and if the 7th wire had been added, Bluetooth
communication might not have been able to be completed in
time.

Notably, it was at this time that my project lead decided to
nix keeping the NFC module in the design, as the wire
connecting the module to the antenna proved to be too
challenging to design around. During my schematic phase, the
decision was made to solely focus on Bluetooth in order to
have a working wireless communication system by the end of

ELECTRICAL HARDWARE DESIGN FOR MOUNT LOCKS 11

the semester, so while it is perfectly capable in my schematic
and PCB layout, it is not soldered onto the board because it is
not used in either the mechanical design nor in any firmware.

Figure 22: The PCB assembled with the battery charger IC, BLE module,

LED ring, speaker, and all SMD components in place

With these components in place, Figure 22 shows the PCB
assembly at this stage. Given that the solenoid locking
mechanism and the cord-cut detection wire integration were
still being figured out by the mechanical engineering team
until the day before Showcase, I could not solder those in
place until the day of Showcase, the results of which are part
of the conclusions below.

VII. CONCLUSIONS
24 hours before Showcase, as is Generate tradition, brought

many surprises to our project, but actually only two on the
electrical engineering front. Regarding the first surprise, while
the entire PCB itself works with no apparent faults or flaws,
the speaker connection to the board became looser and looser
during testing and mounting such that speaker had to be given
a slight nudge in order to turn on. Given that a certain wire
orientation allowed the speaker to turn on without fail, the
decision was made to hot glue the speaker into place in order
to maintain the connection, thereby removing its ability to be
removed. The speaker itself, meanwhile, became one of the
most characterizing and downright successfully annoying
parts of the project, though because the firmware did not have
a state that could simply turn the alarm off, it unfortunately
had to be snipped right before Showcase so that the audience
wasn’t alarmed constantly during the Showcase. For reference,
before the big snip, the speaker was 90dB at 3 feet away,
which put it as loud as a motorcycle that’s 25 feet away.

In addition, the last surprise was the BLE wire connection
to the board. Because every wire connection was solid-core
and made with stiff wire other than those for the BLE module,
which utilized the female-female stranded wire cables that
come standard with breadboarding packages, one of the team
members accidentally ripped off four of the seven BLE wires
clean off of the board, leaving the end bits still soldered inside.
As a result, I had to resolder them to the back of the PCB
where there was space to solder while the unit was completely
within the system. Of course, the ripping occurred 45 minutes
before Showcase, so for the next iteration of the PCB, more

care should be taken regarding easy of subassembly, which
was only planned in the mechanical housing for the PCB itself
and not for the external components like the battery charger IC
or the BLE module. With these Showcase changes reverted,
Figure 23 below shows the PCB fully assembled within the
housing presented at Showcase.

Figure 23: The PCB fully assembled and within the mechanical housing

shown during the Showcase, complete with the solenoid, lock, and cable reel

For Revision 2, while the Revision 1 PCB itself worked
exactly as designed, the next PCB should accomplish two
things that were specifically not focuses during Rev. 1: first, it
should focus on making the PCB smaller, which is necessary
in order for the product to become slimmer, and second, it
should incorporate the external components into its design,
which would prevent unnecessary wire ripping and allow for a
more streamlined, compact design. Both of these things would
reduce the BOM cost and allow for the product to have more
mechanical engineering space to try different mounting
designs, which is critical if the device will ever reach market
and become a viable product.

Overall, the project was a blast to work on, and with the
great team that I had, I feel very confident in saying that the
client is in a much better place than in the beginning of the
semester. With my graduation happening this semester, I can
only hope that soon the device will allow electric scooters
back into San Francisco, where I’ll be living after graduation.
Until then, I hope my design will provide a great leaping point
for the client’s future prototypes!

VIII. ACKNOWLEDGMENTS
The author gratefully acknowledges the contributions of his

fellow Mount Locks team members for their steadfast work
throughout the semester. Specifically, Jacob Londa and
Jennings Zhang comprised the rest of the electrical and
software team, and they were instrumental in integrating my
hardware with their software code base to create a fully
functional electrical works-like prototype. Additionally, the
author would like to thank Professor Mark Sivak for his
advice, especially early in the project, where the concept stage
took place. His knowledge of prototyping and manufacture

ELECTRICAL HARDWARE DESIGN FOR MOUNT LOCKS 12

design helped confirmed the directions that the team decided
for the project, from battery selection to Bluetooth vs. NFC.

IX. REFERENCES
[1] Adafruit Industries, “Bluefruit LE Friend - Bluetooth Low Energy (BLE
4.0) - nRF51822,” Adafruit industries blog RSS. [Online]. Available:
https://www.adafruit.com/product/2267. [Accessed: 12-Dec-2019].

[2] Adafruit Industries, “Lithium Ion Battery Pack - 3.7V 4400mAh,” Adafruit
industries blog RSS. [Online]. Available:
https://www.adafruit.com/product/354. [Accessed: 12-Dec-2019].

[3] Adafruit Industries, “NeoPixel Ring - 12 x 5050 RGB LED with
Integrated Drivers,” Adafruit industries blog RSS. [Online]. Available:
https://www.adafruit.com/product/1643. [Accessed: 12-Dec-2019].

[4] Adafruit Industries, “PowerBoost 1000 Charger - Rechargeable 5V Lipo
USB Boost @ 1A,” Adafruit industries blog RSS. [Online]. Available:
https://www.adafruit.com/product/2465. [Accessed: 12-Dec-2019].

X. BIOGRAPHY

Daniel Castle was born in Frederick County,
Maryland, on February 24th, 1998. He is expected to
graduate from Northeastern University in December
2019 with a degree in Electrical Engineering.

His employment experience includes Apple
Inc., where he was a co-op on the iPhone Hardware
Systems Team, and RKF Engineering, where he
was aa co-op on the RF Communications and
Systems Engineering team. His fields of interest
included high speed PCB design and combining that
with his interest in entrepreneurship.

Mr. Castle has received the National Merit Finalist award and the AP
Scholar with Distinction, and he plans to join IEEE after graduation. He has
also received a full-time job offer from Apple, which he accepted this summer
and plans to start on the same team as his last co-op position in early January.

