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Abstract—Mount Locks is a startup focused on providing 

compact locking solutions for scooters and other micromobility 
solutions to both ride sharing companies like Bird and Lime and 
to more traditional manufacturers like Razor. Rebranded after 
Spring 2018, it applied for Generate, a student-led product 
development studio at Northeastern University in Boston, 
Massachusetts, and was selected as a client for the Fall 2019 
semester. As one of the engineers tasked with creating the locking 
solution prototype, the author focused on the electrical hardware 
design for the project, creating the electrical inner-workings of a 
works-like prototype which was then merged with 3D printed 
housings and other mechanical parts to create a fully-assembled 
looks-like, works-like prototype. Specifically, he conceptualized 
the hardware system design of the prototype with respect to 
project specifications and requirements, selected components, 
performed schematic capture, designed and assembled a printed 
circuit board, and achieved full system integration and testing of 
the hardware, resulting in a demo and prototype showcased on 
December 3rd, 2019. With the hand-off taking place shortly after 
the Fall semester, the client will then proceed with moving 
through the rest of product development lifecycle, starting with a 
limited manufacturing run and eventually performing 
demonstrations with venture capitalists to fund company growth.  
 

Index Terms—Generate, hardware, locking, micromobility 

I.  INTRODUCTION 
HIS paper is intended to cover the electrical hardware 
design of Mount Locks, a client of Generate, Northeastern 

University’s student-led product development studio, during 
the Fall 2019 semester. Notably, Mount Locks is one of the 
first ever returning clients of Generate, and after undergoing a 
pivot to become a startup focused on providing compact 
locking solutions for scooters and micromobility solutions for 
both ridesharing companies like Bird and Lime and traditional 
manufactures like Razor, it contracted a professional product 
development studio, Link PD in Denver, Colorado, to 
physically embody its vision in a first-iteration prototype 
focused on a locking solution for scooters. From Link, 
Generate was handed a substantial mechanical computer-aided 
design (CAD) model but almost no electrical information, and 
with little other documentation or reference provided by Link, 
over the course of the semester, the Mount Locks team 
overhauled almost every subsystem of the product to move it 
from a demo prototype to a device that would be more 
representative of the final product. As a whole, the team added 
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additional core functionality to the product and optimized the 
design along multiple dimensions; namely, the team 
dramatically reduced the complexity of the locking system, 
added smart cord-cutting detection and subsequent alarm for 
the lock, expanded the functionality of a companion 
smartphone application made by the client before the 
semester, bettered the user experience of the product through a 
more robust and realistic user workflow model, and created 
the entire electrical hardware and firmware work from scratch. 

Within the semester, the author focused on the electrical 
hardware design of the project, encompassing conceptual 
scope through a specifications and requirements 
determination, electrical component selection, schematic 
capture, printed circuit board (PCB) design and assembly, and 
systems integration with both the firmware and with the looks-
like prototype that the mechanical engineers on the team were 
creating in parallel. Those topics will be expanded upon and 
covered in this paper. 

II.  SPECIFICATIONS AND REQUIREMENTS 
With no electrical engineering direction from Link other 

than that they used a Bluetooth Low Energy (BLE) chip in 
their design, project directives started from a high level and 
drilled down as more client input was gathered and a mock 
user workflow was mapped out. 

Since the team’s liaison to the client, Madi Rifkin, was in 
California on co-op, the team had a secondary client contact 
member local to Boston that they could contact; however, in 
the beginning of the project, communicating with her was only 
possible through the team’s project lead. As such, the author 
created a shared Google Doc with the project lead detailing a 
list of questions to ask them which were designed to establish 
core electrical project parameters. Chief among them was to 
find out what high-level component systems were already in 
place, what the client needed to have accomplished by the end 
of the semester, what the client wanted to have accomplished 
by the end of the semester, and what any potential reach goals 
were. In other words, these questions were designed to create 
the project requirements. 

In terms of what had already been done, only simple BLE 
communication to an app and a motorized locking mechanism 
had been breadboarded into Link’s demo unit; no mention of 
the specific microcontroller unit that Link used was provided, 
nor was a schematic or a bill of materials since Madi did not 
have that information. Only the specific BLE chip was known, 
which will be discussed in more detail later in the paper. 

What the client needed electrically involved a detailed 
schematic, working and assembled PCB, and clear 
hardware/software integration of a system that contained a 
BLE module, microcontroller (MCU), battery, alarm, LED 
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indication, and locking system in-unit. Similarly, what they 
wanted can be summarized by their reach goals: secure 
Bluetooth communication and a nice user interface with an 
app. Thus, the reach goals were software-oriented, and all 
hardware deliverables were considered project musts. 

Once the project lead discussed the questions with the 
client, the answers he received helped inform me of the next 
step in the process, specification breakdown. After checking 
with the client, these specifications were: a rechargeable 
battery that lasts 24 hours while the device is in use; an alarm 
that is above the range of normal city noise, so 90dB; 
immediate detection of an cord being cut that triggers the 
alarm; and an LED ring that provides feedback to the user 
regarding power status and alarm sounding. 

Note: those are not a lot of specifications, and any details 
regarding how they get done were left solely to me and the 
rest of the team. Thus, after conceptualizing the needs of the 
client, we decided to map out the user workflow to see how 
we wanted to accomplish these goals. 

We started by envisioning how the device would interact 
with a scooter from Lime. How would the user unlock the 
lock? Would they use their phone? Would it be through 
Bluetooth, or maybe through NFC? How would they lock it 
back up again? How would it know when it was locked but 
that its cord was cut, indicating that it was being stolen? 

The answers to these questions informed our approach to 
the project; namely, that we initially felt that NFC was a better 
choice than Bluetooth for unlocking and that either an 
encoder, magnetic switch, or other device would be necessary 
to detect a cord being cut. However, throughout the 
component selection process, these initial observations 
changed as we worked toward the project deliverables. 

III.  COMPONENT SELECTION 
After determining what the project specifications and 

requirements were, component selection took place. 

A.  Microcontroller Selection 
The first step in component selection is to analyze the 

project specifications against the experience level of the team, 
thereby comparing each goal against how hard the team would 
have to work in order to achieve it. Moving from there, 
Generate, throughout its history, has only ever used two main 
MCU architectures in the past: ARM and AVR; therefore, our 
selection of MCU selection was self-limited to those two 
choices. Next, after determining that almost all of the team’s 
experience lay with the AVR style of MCU, chiefly with 
Arduino boards, and that little to no experience was had with 
ARM boards like the STM32, despite the fact that the STM32 
has a robust feature set like a faster clock, more on-board 
memory, and more GPIOs, the decision was made to prototype 
on the Arduino platform. With this in mind, this choice 
became even easier considering that the Arduino itself has its 
own IDE, complete with robust tutorials online and with a 
substantial number of compatible peripheral devices. 
Furthermore, given that the primary objective is to develop a 
working prototype in a semester and not a utilize a “go-for-
broke” mentality to a codebase that would inevitably change 
after the client hand-off, the AVR style processors of the 

Arduino boards had a clear path forward. 
After settling the ARM vs. AVR debate and choosing 

Arduino as the platform of choice, the next question became 
which Arduino chip to select. After looking around the 
Sherman Center for available boards, only four remained: the 
Mega, the Uno, the Zero, and the Leonardo. Given that the 
Mega had 54 GPIOs available and we only needed GPIOs for 
a handful of component functional blocks, the Mega quickly 
dropped out of the race, as did the Zero, which only runs at 
3.3V and would have needed a dedicated power line solely for 
that specific component. Hence, only two boards were left, 
and between the two, only one of them had an MCU that was 
meant to be removed from the Arduino and placed into a 
different circuit, thereby providing a way to program the chip 
without needing to perform in-circuit serial programming 
(ISP). As such, the Uno won the battle, and while the PCB for 
this project does have an ISP header available for use 
specifically for burning our code in a factory setting, it was 
not utilized throughout the project. 

 

 
             Figure 1: The MCU that we selected, the ATmega328P 
 
Importantly, it is worth distinguishing between the Arduino 

MCU, shown in Figure 1, and the standalone Arduino board 
that is traditionally used for breadboarding projects. The 
Arduino MCU that we selected was the ATmega328P, which 
comes packaged in a breakout board called the Arduino Uno. 
This board does have two variants, one with a removable 
processor that sits inside a socket that is soldered onto the 
board and one where the processor itself is directly soldered 
onto the surface of the board using SMT, also known as 
surface mount technology. For ease of programming, we had 
both versions while prototyping individual components, but 
only the variant with the socket was used during 
breadboarding and testing of our entire circuitry. 

B.  Battery Peripherals 
Given that the Arduino Uno’s MCU that we selected as our 

processor only runs at 5V, it became immediately clear that a 
boost converter would be needed to convert the voltage from a 
Li-Po battery, which would power our device, to a steady 5V. 
In addition, the boost converter would need an input range of 
at least 3.0V - 4.2V, which is the full operating range of the 
battery during its discharge curve, with a flag or indicator that 
the battery would need to be charged if the battery dropped 
below 3V. 

As such, deciding on a battery became the first priority, 
since the boost converter characteristics would be dependent 
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upon that. Looking at Li-Po batteries on Amazon yielded 
plenty of batteries that had no detailed technical specifications 
regarding discharge current; as such, Adafruit became the 
provider of choice as they gave this information along with the 
appropriate charging rate for the battery [2]. Originally, the 
battery selected was 6600mAh, which would give an 
incredibly long battery life, but given the physical constraints 
of the product, a smaller 4400mAh battery was chosen, which 
still would produce a battery life much longer than 24 hours if 
no alarm was sounding. For reference, Android phone 
batteries are usually around 3500mAh on average, and while 
calculating battery life depends on current draw over time, 
which in our case involved a continuous drain of around 
0.625A if the alarm is on but otherwise 0.04A if only the 
MCU is powered, going with such a high capacity means that 
the battery life spec will almost always be exceeded in a real-
world use case. In other words, assuming the battery is fully 
charged, the alarm could blare for a little over 4 hours straight 
or last 110 days without charging, which is significant for the 
client. 
 

 
Figure 2: The 4400mAh battery that we selected from Adafruit 

 
Next, knowing the battery for the product, shown in Figure 

2 above, the boost converter needed to be selected. Originally, 
using an external boost converter IC was examined, with the 
parameters of an input voltage range of 2V to 4.3V, which 
would cover the full extension of the discharge curve; an 
output voltage of 5V, which was necessary for the MCU as 
explained above; and an output current of at least 1 Amp, 
which was the maximum safe continuous discharge current of 
the battery. In fact, while linear regulators come in three 
terminal packages that only need output and input capacitors 
as external components for stable performance, boost 
converters do not offer such an arrangement, so an adjustable 
boost converter whose output voltage was dependent on a 
resistor divider network was originally chosen. In this way, the 
same boost converter could also be used for other voltages that 
may be needed for other components by simply duplicating 
the design and changing the resistor values, creating a smaller 
assembly cost. 

However, taking a look at the Adafruit battery again, an 

important point is that the battery has a dedicated port through 
which it can be plugged into another Adafruit board. In other 
words, to attach the battery to our device, the Adafruit battery 
can either have its wires cut and stripped, or more elegantly, it 
can plug into an already-made Adafruit board that has a 
dedicated charging IC and a dedicated 5V boost converter on-
board, both of which are specifically made for the battery [4]. 
That IC, shown in Figure 3 below, also provides many outputs 
that could be utilized in code to produce a variety of important 
messages to the user; namely, the low battery output indicator 
could trigger a certain flash on our LED ring, the enable line 
could be used to reset the device, and the shared voltage line 
between the micro-USB charging circuity and the battery 
output could be used to detect whether the battery was being 
charged or being drained at any given time. Thus, to maximize 
prototyping time, the decision was made to roll the two 
Adafruit products into our device specifically because after 
this prototype was made, in a manufacturing run as the next 
logical step for the client, both parts would change depending 
on the manufacturer’s preference and deal structure, and 
working with a manufacturer to deliver a custom battery and 
IC would have been out of scope. 

 

 
Figure 3: The battery charger IC that we selected from Adafruit 

 

C.  Locking Mechanism Peripherals 
Originally, in the design that Link made, a motor was used 

to turn the lock on and off. Notably, a motor requires 
significant energy to rotate, and steps would have needed to be 
taken to make sure that it does not rotate fully in the design 
and create a source of failure. Thus, the decision was made by 
the project lead to look for alternative locking solutions, and 
one that was presented involved using a solenoid, which was 
chosen because the lock only has two states, just like the two 
states of a solenoid (open and closed). 

Given this information, I gave the mechanical engineers the 
main electrical parameter of the solenoid, which was that the 
solenoid needed to operate at 5V so that a dedicated power 
solution was not needed, but they were otherwise allowed to 
pick whichever solenoid that fit their torque and size 
requirements. As such, they selected one from Amazon, the 
DS-0420S from Dowonsol, and because it did operate at 5V, I 
had no problem implementing it into the electrical design. 
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This solenoid is shown in Figure 4 below: 
 

 
Figure 4: The solenoid that we selected for the locking mechanism 

 

D.  Cord-Cut Detection Peripherals 
In order to detect that the cord of the product was cut, many 

solutions were debated and hotly talked over. In Generate’s 
previous version of the product, the cord detection relied on a 
magnetic solution where the entire cord was powered, and if 
the cord were cut, a reed switch would trigger an alarm to 
sound. While this solution worked well, because the entire 
cord had to be powered by the battery, it was considered too 
power-intensive, so I developed a new solution. 

Knowing that the MCU we selected has both input and 
outputs pins, I realized that the cord-cut detection could be 
accomplished with no electrical components other than wire. 
This feat is due to the fact that the input pins of the MCU are 
high impedance while the output pins are low impedance, and 
by hooking them together such that a single output pin is 
directly connected to a single input pin, if the output pin is set 
to output LOW, or ground, then the entire cord would be at a 
single voltage but use negligible current due to the high 
impedance on the line. Furthermore, if the cord is cut, the 
input pin could use an internal pull-up resistor to flip to HIGH, 
or 5V, and upon this action, trigger the alarm. 

I also realized that knowing the lock state should be known 
by the MCU, so implementing a totally mechanical solution 
wouldn’t solve this issue. Thus, by modifying the cord itself 
such that it now has only a metal head and no live wire, if the 
two pins on the MCU each had one wire that together 
terminated close enough to each other within the lock, now 
when the metal head was inserted, both wires could make a 
connection and short together. In this way, the lock being set 
could be electrically known to the MCU.  

However, this method does not take into account cord-cut 
detection, so these two concepts were married together into 
the same design. Leaping off of the idea of a metal head inside 
the lock, we realized that instead of two wires being connected 
together by the metal head, only one wire needed to be fixed 
to the lock while the other wire could run through the cord 
itself. Then, with that cord terminating at a pogo pin, the end 
of the cord could securely lock into place with the existing 
design that the mechanical engineers made. Hence, both cord-

cut detection and lock state could be known, and this design is 
shown in Figure 5: 

 

 
Figure 5: The 3D printed cord end terminating with a pogo pin is shown 

plugging into the lock, which has copper wrapped around it to create an 
electrical connection 

E.  Alarm Peripheral 
In order to broadcast to the world that a scooter was being 

stolen, an alarm would need to be sound. Given this need, 
along with a relatively small form factor for the alarm, two 
types of alarms were debated: piezoelectric buzzers and 
magnetic speakers. 

Piezoelectric buzzers were first debated because they used 
incredibly low power and, up close, could be incredibly loud, 
even as loud as the 90dB goal from our specifications list. 
However, while implementing firmware code for these 
buzzers would have been remarkably easy given the wealth of 
online tutorials for them, they simply do not push enough air 
to be loud at a distance. Hence, magnetic speakers were next 
considered. 

These magnetic speakers could reach much higher dB/m 
levels than the piezoelectric buzzers, but they also had a major 
drawback: power. They are spec’d with a maximum power 
level and with the resistance of the speaker itself such that if a 
given voltage is applied across the speaker’s terminals, the 
power at that voltage can be calculated and compared to the 
maximum power level of the speaker. In our case, looking at 
the available speakers on Digikey and Mouser, only speakers 
with wire leads and with a resistance of 8 Ohms were 
considered. These choices were made because the wire leads 
allow the speaker to be mounted into our housing at a distance 
from our PCB and because the speakers would be operating at 
a voltage of 5V. Thus, given that the speakers that fit our size 
requirements only came in 4 or 8 Ohm packages, if a 4 Ohm 
speaker were chosen, the speaker would need more than 1 amp 
of current and would max out the output from the battery IC. 
Hence, with a speaker that is 8 Ohms, the current draw is 
0.625A nominally, which means that it can blast away while 
the LED lights are flashing without limiting the system. The 
specific speaker that we chose is shown in Figure 6 on the 
next page: 
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Figure 6: The 8-Ohm speaker that is 90dB loud when standing 3 feet away. It 
is manufactured by DB Unlimited 

 

F.  Status Peripheral 
Once an alarm sounds, the client wanted a visual cue to 

alert nearby people that something was wrong. As such, in the 
design that Link drew up, an LED ring was conceptualized 
because it gave a sleek, modern appearance and because it 
could be customized to a wide range of colors. 

Keeping the LED ring in mind as a client objective, care 
was taken to research LED rings and how they might be 
integrated into a product. Taking a cue from Adafruit, while I 
was doing research on the battery, I noticed that Adafruit 
makes several different versions of LED rings. In fact, these 
rings had tutorials and drivers for our Arduino MCU, which 
would make the firmware much easier, and the rings also had 
several million light customization options that we could 
curate specifically for our use cases. Plus, the LED rings had 
known current draws, set to 18mA per each LED, and only 
needed three terminals to work: power, ground, and data. 
Given these features, I purchased the smallest LED ring, 
which had 12 LEDs attached in a row, because at 18mA for 
each LED, I knew that the battery could support this ring and 
the alarm at the same time. This LED ring also needs two 
external components in order to achieve proper performance: a 
bypass capacitor to limit inrush current and a small resistor to 
limit voltage spikes across the data line [3]. Figure 7 below 
shows the specific LED ring that we chose: 

 

 
Figure 7: The LED ring that we selected from Adafruit 

G.  Communication Components 
Two different methods of wireless communication were 

considered throughout the project: Bluetooth and NFC. 
Bluetooth was initially proposed by Link through their 

Renesas RL78/G1D board, which unfortunately has little 
Arduino compatibility. However, they did have basic 
communication between an Android phone and their 
breadboarded demo unit established, but after discussing it 
further with the client, Bluetooth itself was considered to be 
secondary to NFC because of the assumed need to pair 
Bluetooth devices in order to communicate between them. As 
such, the beginning of the semester focused on trying to bring 
up an NFC board and establish communication with a phone. 
Given that we were using Arduino as our IDE, I looked at 
Arduino-compatible NFC modules, and given the lack of 
hobbyist NFC adoption as compared with Bluetooth, only two 
NFC modules that had the Arduino drivers were found, and 
only one was currently being sold. That module was the Grove 
NFC tag, and after purchasing it, the firmware team set out to 
program it. This tag is shown in Figure 8 below: 

 

 
Figure 8: The NFC tag that we selected from Seeed Studio 

 
However, the team ran into several issues involving old 

libraries that needed to be debugged, and while NFC tag 
recognition was established, phone communication could not 
be established by the half-way point of the semester. As such, 
the project lead decided to switch to Bluetooth after one of the 
firmware engineers attended a hackathon at Harvard and was 
able to get basic phone communication working without the 
need to pair the phone and chip. That BLE module was the 
Adafruit BLE Friend, which like most Adafruit products, has 
robust Arduino support and an active community of hobbyists 
helping to expand its capabilities [1]. This module is shown 
below in Figure 9: 

 

 
Figure 9: The BLE module that we selected from Adafruit 
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Given that the original BLE module that the firmware team 
selected was the HC-05, this pivot changed up my schematic 
and hardware design, but because the decision was made 
before any layout was started, replacing the HC-05 with the 
BLE Friend was simply a matter of removing the voltage 
divider necessary for 3.3V communication and replacing it 
with the updated pin mapping for this device. 

H.  Motion Peripheral 
After musing with my project lead, I wondered if the 

scooter should be able to sense unexpected motion and sound 
off its alarm to hedge against it being stolen. Thus, in order to 
sense whether it was being moved, the product would have an 
accelerometer that would poll the device when it was unlocked 
so that the scooter would have a deterrent mechanism against 
people stealing it while it remained untethered to an object 
(i.e. if the previous user did not attach the lock to anything). 

Digging more into the specifics and after talking with Prof. 
Sivak, we realized that false alarms would be present if the 
accelerometer was implemented, and that these false alarms 
had no satisfying resolution because unless the lock was 
unlocked by someone using the app, it would not shut off until 
the battery died. Furthermore, we would need to try to perfect 
an algorithm that would minimize these false alarms, which 
would eat up engineering resources that could be devoted 
elsewhere. Given these constraints and unsatisfactory answers, 
we decided to remove this feature from the product, especially 
given that it is not a core feature of the product and is not a 
client-mandated requirement to have. However, in another 
revision, the concept of motion detection can be revisited, as 
we agreed that if done correctly, it could have promise within 
the design. 

IV.  SCHEMATIC DESIGN 
Once the components were selected, schematic capture for 

a printed circuit board (PCB) took place. The software that I 
used was Upverter, which was chosen because it runs through 
a web browser in the cloud and because multiple people could 
have access and edit the project at the same time. 
Additionally, pin mapping was done before schematic design, 
which allowed me to connect together every net with the 
correct pinout already in place for each component. 
Throughout this section, I refer to both wiring and using nets, 
and it is worth pointing out that nets are logical connections, 
which is technically all that a schematic is in itself. Physical 
connections are done in the layout, which is the topic of the 
next section. Nevertheless, I refer to both wiring and using 
nets in this section because it makes conceptual sense to refer 
to connecting components this way, so while I use these terms 
interchangeably here, these two concepts should not be 
conflated in the next section, Section V.  

 

 
Figure 10: The MCU schematic 

 
Schematic capture first started with the MCU, as shown in 

Figure 10 above. After importing the design of the 
ATmega328P from Upverter’s servers into my design, 
attention had to be paid to making the MCU functional by 
adding all external components necessary for stable 
performance. Here, I realized that because the MCU is used in 
an Arduino, and every Arduino’s schematics are published 
online, I could look at the schematic design and extrapolate 
the required components. These involved two external bypass 
capacitors to ground connected to the 5V and AREF pins, 
which were needed so that high frequency noise could be 
filtered. In addition, an external oscillator was needed for the 
device. This oscillator, in the beginning of the semester, was 
thought to be unnecessary because the MCU itself has a built-
in internal 8MHz oscillator, but because that oscillator has a 
poor performance, the Arduino uses an external 16MHz clock 
to run its code, and hence, our code. Thus, we also needed to 
add the external oscillator, along with its two flanking 
capacitors, for frequency stability and to ensure that our code 
runs the same way in both an Arduino and in our design. As 
mentioned above, the pin mapping was completed before 
schematic capture was started, which meant that the MCU 
schematic could be completed all at once and not be done 
component-by-component. 

 

 
Figure 11: The schematic for the battery charger IC 

 
Once the MCU was drawn up, the battery charger IC 

needed to be connected to power it; hence, an 8-pin header 
was placed and the corresponding nets aligned as shown in 
Figure 11 above. Because the charger IC had 8 pins, each of 
which could be useful in debugging or providing features to 
the client, each was wired to pins on the MCU that 
corresponded to their function. In other words, besides the 
obvious power and ground lines, the charger IC provided 
analog signals for the raw battery output and a combined 
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micro-USB and battery output, plus digital signals for low 
battery and for resetting the IC. These pins could all be used 
for detecting power and the rate at which the battery was 
charging, so they could be useful during firmware 
development. On the other hand, the USB pin provided shared 
power with the micro-USB port, and because we already had a 
5V boost converter providing power, this pin was not needed; 
hence, the header count was reduced to 7. 

 

 
Figure 12: The NFC schematic circuitry 

 
 Given the original push for an NFC-enabled device, a 

header was provided for this purpose as well, shown above in 
Figure 12. As the NFC device that we selected communicated 
with our MCU via I2C, I added the necessary pull-up resistors 
and chose their value to be 4.7K, which is a standard number 
given the low power of the NFC module. This header was 
likewise connected to the chosen pins on the MCU, which had 
dedicated SDA and SCL lines. 

 

 
Figure 13: The ISP header’s schematic 

 
While in our design, we solely utilized programming our 

MCU via an Arduino breakout board, but I realized that in a 
factory setting, this would not be possible. Hence, I wired out 
an ISP header, shown in Figure 13, to allow manufactures to 
program the chip once it was already placed into the board, 
and in fact, we could have also used this method to add new 
code or likewise make adjustments if the chip became hard to 
access after product assembly. With a standard 3x2 header 
chosen for the layout, giving the ISP header the same pinout 
as is common in the industry became the next design choice. 
Notably, the layout and the schematic have no correlation; as 
such, while the schematic has the ISP header as a 6x1 header, 
rest assured that the layout is definitely 3x2.  

 
Figure 14: The Adafruit BLE Friend’s header schematic 

 
After the ISP was mapped, the BLE chip needed to be 

integrated into the design. Originally, when the HC-05 BLE 
module was chosen, both a 4-pin header and a voltage divider 
were needed to step down the Rx communication from 5V to 
3.3V. However, once the new BLE module was chosen, a 
single 7-pin header replaced both design elements, trading off 
parts for pins. Though the module itself has space for 8 total 
pins, the DFU pin is reserved solely for resetting the BLE chip 
and would not be utilized in our code; hence, this pin was 
dropped from the design, but the other seven were kept for the 
UART communication, power, ground, and special mode lines 
that the code would need. Thus, after these decisions, the final 
BLE schematic is shown above in Figure 14. 

 

 
Figure 15: The schematic for the alarm circuitry 

 
 Next, the alarm circuitry as shown in Figure 15 above 

needed to be designed. Because we went with a magnetic 
speaker whose power requirement is much greater than what 
can be supplied by the output of our MCU, simply hooking up 
power and ground to our specified GPIO pin and ground 
would not suffice. Rather, the speaker would need to be turned 
on via a FET, which I chose to be a logic-level N-channel 
MOSFET due to its compatibility with the HIGH digital logic 
level of 5V, which would send the MOSFET into inversion 
and operate in the saturation region. In this way, upon 
receiving a HIGH signal, the FET would turn completely on 
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and let the speaker blast at the loudest level that it could 
handle. I also made sure that the speaker would not be turned 
on if no signal came from the MCU by using a pull-down 
resistor, and I maintained signal integrity by adding a small 
100 Ohm resistor that would dampen any reflections from 
turning on the FET. In addition, because the speaker is 
magnetic, a flyback diode was incorporated to ensure that the 
MOSFET would not break down if any voltage spikes 
appeared when the speaker was turning on and off. Lastly, the 
speaker came bundled with a convenient male port, whose 
female end could be soldered to my PCB. In this way, the 
speaker could be plugged or unplugged and replaced with ease 
in the case that the speaker blew out or was left blaring for too 
long. Hence, it became part of my schematic. 

 

 
Figure 16: The schematic for the solenoid circuitry 

 
In a similar fashion, the solenoid had almost the same 

design, as shown in Figure 16. This choice was due to three 
reasons: first, the solenoid needs a massive current spike to 
turn on, second, it is also an inductive load, and third, because 
keeping the same design and parts would help keep the PCB 
BOM costs down. The only difference between this schematic 
design and the speaker’s is that no female header was used 
here; rather, the solenoid’s wires themselves were going to be 
directly soldered to the PCB. 

 

 
Figure 17: The schematic for the LED circuitry 

At this point, the schematics for the LED ring were 
designed as shown in Figure 17. According to Adafruit’s 
website, if the LED ring were to be powered by a large 
capacitor bank, or in our case, a large capacity battery, a 
1000pF capacitor would be required between the power and 
ground lines to soak up the initial onrush of current when 
power is first applied, thereby saving the pixels from blowing 
out. Hence, I included one in my design, despite the $10 cost 
for one 1000pF cap on Digikey and its large footprint on the 
PCB. In addition, a 470 Ohm resistor was specified to be 
connected in series to the data line in order to prevent spikes 
from the data line damaging the first pixel in the row. 
However, while the website specifies that this is necessary, it 
turns out that it is completely the opposite of that. In fact, it 
won’t work at all if this 470 Ohm is used; thus, I modified the 
schematic to have it be a 0 Ohm resistor instead in case we 
needed to analyze the traffic coming through the data line 
during debugging. 

 

 
Figure 18: The schematics for cord-cut detection 

 
Lastly, the cord-cut detection circuitry needed to be 

mapped out. Because the cord-cut circuitry on the PCB side is 
much less complicated than its hardware implementation 
within the device, this only involved placing a 2-pin header 
and connecting the two leads to their respective GPIO nets on 
the MCU as shown in Figure 18. 

In this way, the schematic for my board was designed and 
finished. Notably, I tried to make every component a surface 
mount component if possible because it would both provide a 
better mechanical connection than my hand soldering and 
because it would provide a smaller profile to fit inside the 
mechanical housing. 

V.  PCB DESIGN 
Once the schematic was finished, I began the PCB layout. 

The first step in designing a good layout is to determine how 
many layers to use for the PCB. Because our PCB was 
relatively simple, and because cost was a factor, I made the 
choice to create a 2-layer PCB, which would be the simplest to 
manufacture and the fastest to arrive at a given price point. 

The second step is component placement; in other words, 
deciding on a board size and determining where every 
component will be placed within those dimensions. After 
talking to the mechanical engineers, the initial board size for 
the PCB was allowed to be 1.5’’ x 3’’; while this later 
expanded by 3mm in each direction to accommodate screw 
holes to mount the PCB, this design change was made after 
the PCB had already been fully designed and is thus not 
included in talking about specific reasoning for component 
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and trace placing. 
The first task for component placement traditionally 

involves first placing the parts that have engineering mandates 
to be at certain locations on the board. Because all of our user-
facing components are external to the board, meaning they 
will be affixed to the board via wires (whose length at this 
point in the semester was still unknown because the housing 
had not been designed), this was not a major decision, so other 
factors took hold. In this case, after grouping components by 
function within the layout tool, I noticed that the MCU 
lengthwise is almost 1.5’’. Meaning, because it is about the 
same size lengthwise as the PCB, I can use the MCU to 
bifurcate the PCB into two sections that correspond to 
different functions. 

Using that methodology, I placed the MCU in the middle of 
the board, and noting that the MCU also has external 
components grouped with it, I placed those components close 
to their respective pins. For the ATmega328P, this involved 
placing the two decoupling caps close to their respective 5V 
pins and the crystal oscillator circuitry close to the two pins 
dedicated for crystal oscillation.  

Next, I determined that the left-hand side of the board 
would be used for two functions: external wireless 
communication and MCU control. Thus, the left-hand side of 
the board had the NFC and BLE headers, as well as the battery 
charger IC and ISP headers. Of course, coupled to the NFC 
header are the I2C pull-up resistors, so those were grouped 
accordingly. 

On the right side of the PCB lay the rest of the functional 
groups: status, lock, alarm, and cord-cut detection. Because 
the solenoid and the speaker, for the lock and alarm functional 
groups respectively, had almost identical schematics, I wanted 
to place them close to each other for three reasons: power; 
because they were most likely to be switching and cause 
unwanted ground bounce and signal integrity issues; heat, 
because they were most likely to generate the most thermal 
stress and that could be mitigated with a heatsink placed over 
the area; and clarity, because the schematics matched and 
routing out the same circuit in a similar area would both look 
better and be easier to keep straight when routing. 

The last two functional groups, status and cord-cut 
detection, were also placed on the right side because it would 
be the least disruptive to signals coming from the MCU; in 
other words, because they fit best there. For the status 
functional group, the LED ring required that the header be 
placed near the inrush-limiting capacitor, so these components 
were placed first, and the data line of the LED header was 
lined up perfectly with the respective pin of the MCU, 
meaning that the routing would be easy, which is one of the 
goals of component placement. Lastly, the cord-cut detection 
header was placed nearby to its pins, which also allowed for 
easy routing. 

Once the components were all placed, I stepped back to 
align and adjust each component so that they all looked nice 
and neat on the board. Typically, in a signal integrity-sensitive 
design, this would instead focus on placing components away 
from each other rather than toward each other, but because no 

component needed a high signal integrity, I could afford the 
indulgence of a pretty board. In this case, I aligned every 
component into respective columns so that the board became 
more organized, and with proper row spacing between 
components to ensure clean routing standards, and the board’s 
design became both functional and clean. 

At this point, the third step, routing, took place. During this 
process, each net, the logical connection, transforms into a 
trace, or a physical copper connection, on the board. However, 
before routing actual traces, planning what to do with the 
surrounding copper planes are paramount. Because I had a 2-
layer design, I could create two copper pours that could 
connect every net assigned to a specific value to the same net 
of the copper pour, and traditionally, because it provides both 
the best signal integrity and the best cost efficiency when 
routing, I decided to use one copper plane for ground and the 
other copper plane for 5V. 

In this way, all of my headers, which were all through hole, 
could be connected to ground or 5V by virtue of the pour, 
meaning that I would not have to route those signals at all on 
my board. Deciding that the top layer would be ground, I only 
had to route out the 5V connections to the few surface mount 
components that were not connected to the pour but still 
needed the electrical connection; these were the I2C pull-up 
resistors, MCU bypass capacitors, and LED ring capacitor. 

Once the power traces were routed, I routed all of the signal 
traces from the MCU. In doing so, I realized that, in order to 
make routing easier and increase signal integrity, some of the 
pins needed to be swapped and mapped to different 
components. Once this took place, after making smart 
placement choices, the routing of the all GPIO and analog 
MCU signals could be solely accomplished on the top layer 
except for a few that, because there was no more space, 
needed to be routed through the bottom layer to their 
respective pins. In fact, only one via was needed throughout 
the entire design, which is something that I take pride in. 

After the MCU traces were routed, all other components 
that had unfinished nets were connected. These components 
included the FETs, their corresponding pull-down and 
reflection-damping resistors, and the flyback diode. By 
keeping with proper routing guidelines, these components 
were likewise routed with proper trace widths, which was 
especially important for the solenoid and speaker FETs. In 
fact, because these two devices could pull as much as 0.7A, I 
had to increase my normal trace width size from 20 mils to 60 
mils to be on the safe side. 

In this way, all of my components were placed and routed 
within the PCB as shown in Figures 19 and 20 on the next 
page. Now, I could proceed to order my PCB from Sunstone 
Circuits. 
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Figure 19: The top layer of the PCB layout 

 

 
Figure 20: The bottom layer of the PCB layout 

VI.  PCB ASSEMBLY AND TESTING 

 
Figure 21: The PCB after manufacture by Sunstone Circuits 

 
With a lead time of 2 days and 2-day shipping, my PCB 

order came in a week, and one of the four PCBs that I ordered 
is shown in Figure 21 above. Once all of my components also 
arrived in the Sherman Center, I set out to assemble one as a 
first revision board. To start, I soldered all of the SMD 
components to the board because, with no through hole 
components in place, the board provides a level surface that 
makes those small components easier to align. Plus, by 
soldering the components that need a hot air gun first, I can 
ensure that components that I previously soldered do not fall 
off of the board as I’m trying to solder other components onto 
the board. These SMD components comprised every resistor, 
capacitor, FET, and diode for my design, and once they were 
all soldered onto the board, I could begin soldering the rest of 
the components by hand. 

I began the hand soldering by first soldering the female 
speaker connection, as it had the hardest soldering positioning 

due to the small through hole size and aggressive spacing 
necessary to maintain compatibility with the proprietary 
header. At first, I actually soldered the wrong speaker 
connector to the board, and because the through hole was so 
small, the solder gun couldn’t actually suck up the solder. 
Therefore, I actually needed to start over and repeat the 
process with a new board. 

Once the new board had all SMD components soldered, I 
debated removing the small metal leads from the female 
connector and simply soldering those, which would allow me 
to solder the speaker directly to the board. However, I wanted 
to maintain the ability to quickly swap out the speaker for a 
new one if the one we were using became blown out or broken 
or if we needed to add resistance to the line to lower the 
maximum speaker volume. Hence, I stuck with the female 
connector for the PCB. 

Next, because we wanted to be able to remove the MCU 
and reprogram it via an Arduino, I instead soldered a 28-pin 
socket in its place. That way, the socket would maintain the 
robust electrical connection required and allow for the MCU 
to both be secure within the socket and able to be popped out, 
a feature which was heavily utilized during debugging. 

I then soldered the LED ring onto the board with 2 inches 
of wire separating the board from the LED ring, per the 
instructions from the mechanical engineering team. In fact, 
they said that all wires should be around 2 inches in length 
expect for the speaker wires, which should be longer; thus, 
this can be the assumed wire length from now on. 

After the LED Ring, I next soldered onto the board the 
battery charger IC with 22 gauge wire in order to ensure that 
the wires wouldn’t burn up during peak performance, and after 
placing one of our MCUs into the socket, tested the board to 
see if the MCU could turn on the LED ring. With this gut-
check successfully passed, I then wired up the BLE module, 
which already had male headers in place. Given this factor, 
and the fact that the BLE module firmware was still in 
development up to and including the day of the Showcase, I 
wanted to make the BLE module removable just like the 
speaker so that it could be tested both in the full assembly and 
in a smaller breakout board for faster code turnaround. Thus, 
in order to make the BLE module removeable, I snipped 7 
female-female wires in half and soldered the snipped ends to 
the board, keeping the female connections open so the module 
could be easily plugged and unplugged. In fact, the ability to 
selectively remove one of the wires but keep the others on 
allowed one of my team members to diagnose a firmware 
issue that only appeared when one of the wires was connected. 
As a result, only 6 of the 7 wires were needed in the final 
design, and if the 7th wire had been added, Bluetooth 
communication might not have been able to be completed in 
time. 

Notably, it was at this time that my project lead decided to 
nix keeping the NFC module in the design, as the wire 
connecting the module to the antenna proved to be too 
challenging to design around. During my schematic phase, the 
decision was made to solely focus on Bluetooth in order to 
have a working wireless communication system by the end of 
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the semester, so while it is perfectly capable in my schematic 
and PCB layout, it is not soldered onto the board because it is 
not used in either the mechanical design nor in any firmware. 
 

 
Figure 22: The PCB assembled with the battery charger IC, BLE module, 

LED ring, speaker, and all SMD components in place 
 

With these components in place, Figure 22 shows the PCB 
assembly at this stage. Given that the solenoid locking 
mechanism and the cord-cut detection wire integration were 
still being figured out by the mechanical engineering team 
until the day before Showcase, I could not solder those in 
place until the day of Showcase, the results of which are part 
of the conclusions below. 

VII.  CONCLUSIONS 
24 hours before Showcase, as is Generate tradition, brought 

many surprises to our project, but actually only two on the 
electrical engineering front. Regarding the first surprise, while 
the entire PCB itself works with no apparent faults or flaws, 
the speaker connection to the board became looser and looser 
during testing and mounting such that speaker had to be given 
a slight nudge in order to turn on. Given that a certain wire 
orientation allowed the speaker to turn on without fail, the 
decision was made to hot glue the speaker into place in order 
to maintain the connection, thereby removing its ability to be 
removed. The speaker itself, meanwhile, became one of the 
most characterizing and downright successfully annoying 
parts of the project, though because the firmware did not have 
a state that could simply turn the alarm off, it unfortunately 
had to be snipped right before Showcase so that the audience 
wasn’t alarmed constantly during the Showcase. For reference, 
before the big snip, the speaker was 90dB at 3 feet away, 
which put it as loud as a motorcycle that’s 25 feet away. 

In addition, the last surprise was the BLE wire connection 
to the board. Because every wire connection was solid-core 
and made with stiff wire other than those for the BLE module, 
which utilized the female-female stranded wire cables that 
come standard with breadboarding packages, one of the team 
members accidentally ripped off four of the seven BLE wires 
clean off of the board, leaving the end bits still soldered inside. 
As a result, I had to resolder them to the back of the PCB 
where there was space to solder while the unit was completely 
within the system. Of course, the ripping occurred 45 minutes 
before Showcase, so for the next iteration of the PCB, more 

care should be taken regarding easy of subassembly, which 
was only planned in the mechanical housing for the PCB itself 
and not for the external components like the battery charger IC 
or the BLE module. With these Showcase changes reverted, 
Figure 23 below shows the PCB fully assembled within the 
housing presented at Showcase. 

 

 
Figure 23: The PCB fully assembled and within the mechanical housing 

shown during the Showcase, complete with the solenoid, lock, and cable reel 
 

For Revision 2, while the Revision 1 PCB itself worked 
exactly as designed, the next PCB should accomplish two 
things that were specifically not focuses during Rev. 1: first, it 
should focus on making the PCB smaller, which is necessary 
in order for the product to become slimmer, and second, it 
should incorporate the external components into its design, 
which would prevent unnecessary wire ripping and allow for a 
more streamlined, compact design. Both of these things would 
reduce the BOM cost and allow for the product to have more 
mechanical engineering space to try different mounting 
designs, which is critical if the device will ever reach market 
and become a viable product. 

Overall, the project was a blast to work on, and with the 
great team that I had, I feel very confident in saying that the 
client is in a much better place than in the beginning of the 
semester. With my graduation happening this semester, I can 
only hope that soon the device will allow electric scooters 
back into San Francisco, where I’ll be living after graduation. 
Until then, I hope my design will provide a great leaping point 
for the client’s future prototypes! 

VIII.  ACKNOWLEDGMENTS 
The author gratefully acknowledges the contributions of his 

fellow Mount Locks team members for their steadfast work 
throughout the semester. Specifically, Jacob Londa and 
Jennings Zhang comprised the rest of the electrical and 
software team, and they were instrumental in integrating my 
hardware with their software code base to create a fully 
functional electrical works-like prototype. Additionally, the 
author would like to thank Professor Mark Sivak for his 
advice, especially early in the project, where the concept stage 
took place. His knowledge of prototyping and manufacture 



ELECTRICAL HARDWARE DESIGN FOR MOUNT LOCKS 12 

design helped confirmed the directions that the team decided 
for the project, from battery selection to Bluetooth vs. NFC. 

IX.  REFERENCES 
[1] Adafruit Industries, “Bluefruit LE Friend - Bluetooth Low Energy (BLE 
4.0) - nRF51822,” Adafruit industries blog RSS. [Online]. Available: 
https://www.adafruit.com/product/2267. [Accessed: 12-Dec-2019]. 
 
[2] Adafruit Industries, “Lithium Ion Battery Pack - 3.7V 4400mAh,” Adafruit 
industries blog RSS. [Online]. Available: 
https://www.adafruit.com/product/354. [Accessed: 12-Dec-2019]. 
 
[3] Adafruit Industries, “NeoPixel Ring - 12 x 5050 RGB LED with 
Integrated Drivers,” Adafruit industries blog RSS. [Online]. Available: 
https://www.adafruit.com/product/1643. [Accessed: 12-Dec-2019]. 
 
[4] Adafruit Industries, “PowerBoost 1000 Charger - Rechargeable 5V Lipo 
USB Boost @ 1A,” Adafruit industries blog RSS. [Online]. Available: 
https://www.adafruit.com/product/2465. [Accessed: 12-Dec-2019]. 

X.  BIOGRAPHY 

Daniel Castle was born in Frederick County, 
Maryland, on February 24th, 1998. He is expected to 
graduate from Northeastern University in December 
2019 with a degree in Electrical Engineering. 

His employment experience includes Apple 
Inc., where he was a co-op on the iPhone Hardware 
Systems Team, and RKF Engineering, where he 
was aa co-op on the RF Communications and 
Systems Engineering team. His fields of interest 
included high speed PCB design and combining that 
with his interest in entrepreneurship. 

Mr. Castle has received the National Merit Finalist award and the AP 
Scholar with Distinction, and he plans to join IEEE after graduation. He has 
also received a full-time job offer from Apple, which he accepted this summer 
and plans to start on the same team as his last co-op position in early January. 


